CHAPTER 4
MULTIDIMENSIONAL UNREPLICATED LINEAR FUNCTIONAL
RELATIONSHIP MODEL WITH SINGLE SLOPE AND ITS
COEFFICIENT OF DETERMINATION

Issues or problems stated in previous chapters will be investigated in Chapter 4
and Chapter 5. For example, the COD for the ULFR model was shown to be suitable for
use on imperfect reference image only. Henceforth, the performance of the COD will be
investigated when we have multiple image attributes and when local and global
information are combined. The multivariate version of the ULFR model will then be
investigated.

This study considers a new functional relationship model where the X, and ¥,

are p-dimensional vectors, and are linearly related. It can be considered as a
generalization of the unreplicated linear functional relationship model proposed by
Adcock (1877) where the bivariate observations are only one-dimensional. The essential

differences of the proposed model and the multivariate model of Chan & Mak (1983,

’
1984) involved the different elements in the intercept vector a = (al,az,...,a p) and the

slope matrix B is replaced by a scalar value f. Practically, a quality attribute measured

from reference image can only be compared with the same quality attribute from its
distorted version. This explains why models proposed by Sprent (1969) and Chan &
Mak (1983, 1984) are inappropriate because they expressed a quality attribute measured
from reference image as a linear combination of difference quality attributes in the
distorted image. On the other hand, simultaneous relationships produce more than one
similarity measures; one measure for each image quality attribute. This is clearly not

suitable for many image processing problems as Keelan (2002) stated that the image



quality measure is a single number correlated with a perceived attribute of quality in an
image.

This study presents the model for the multidimensional unreplicated linear
functional relationship (MULFR) with single slope and estimates the parameters. The

properties of the estimated parameters are investigated. The coefficient of determination

for this model, labeled as R; and its properties are also discussed.

4.1 Formulation of Multidimensional ULFR (MULFR) with Single Slope
We have seen the needs for proposing a new ISM to accommodate the issues

mentioned in Chapter 2. We consider the ULFR model in Section 3.3 and derived a
preliminary 1-to-1 image comparison measure using coefficient of determination, R; .

These results had been published in Chang et al. (2007) and Chang et al. (2008a, 2008b).
However, this ULFR model still considered one image attribute. To deal with multiple
image quality attributes, we developed and extended the ULFR model to
multidimensional observations (MULFR) with single slope. Lastly, the coefficient of
determination for the MULFR model and its properties are derived to obtain an overall

assessment of the localized quality features.

4.1.1 The MULFR model

Divide the reference image X and processed image Y into n disjoint windows of

! !

size wxw . Suppose that K:(Y. Y, Y.) and Xl.:(X le.,...,Xpl.) are two

1is42i0 s L pi 1i>
linearly related unobservable true localized image quality attributes

Y=a+BX,i=12,.,n (4.1)
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where Y, and X, , k=1,2,...,p; i=12,...,n are p unobservable image quality
attributes measured from the » windows of the reference image and distorted image
respectively, and a:(al,az,...,a p) are intercepts and f is the slope of the linear

function.

Now, we assume that the two corresponding random vector variables

yi:(yli’yZi""’ypi) and xiz(xll.,xz,.,...,xpl.) are observed localized image quality

4 !
attributes measured with errors &, = (51,.,52,.,...,51”.) and ¢ = (gll.,gzl.,...,gpl.)

x. =X +6.
=T }i:1,2,...,n. 42)
y, =Y +¢

Assuming both error vectors are mutually and independently normally distributed with
(i) E(6)=0=E(¢)
(i1) Var(é‘,ﬂ.) =0’ and Var(g,a.) =7’ for k=1,2,...,p; i=12,....n
(i)  Cov(,.5,)=0=Cov(s,.&, ), for Vi# j; i,j=12,..n
Cov(é‘,ﬂ.,é'hl.) =0= Cov(gki,ghl.) NVh#k, hk=12,...,p,
Vi, i=12,....n

COV(5ki,8hj)=O for Vi,j; i,j=12,...,n and Vh,k; hk=12,....p

2 0 0 0
. 022 0 0] ,
That is & ~NID(0,Q,) and ¢ ~NID(0,Q,) where Q= 0 o 0 =71,
0 0 0 ¢
o> 0 0 0
2 &.
Q, = 0 @ .0 0 =o’l and let v, =| ' |, then Cov(vl.,vi)=Q= G are
o 0 - 0 9, Q, Q,
0 0 0 o

diagonal variance-covariance matrices, Q, =Q, =0, Q, and Q,, are positive definite.
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4.1.2 Estimation of Parameters

We start with the joint probability density function of x; and y,
L |1 [y,- —E(y,-)J . {y,- —E(y,-)J
Q|A 2 {x-E(x) x,—E(x,)

(Var)

:Wexp{—%{[(%—z)' (xi—Xi)’]Q’l(;?__;]H 4.3)

where r=2p, E(xl.)=E(Xl.+5l.)=Xl. and E(yl.)=E(Yl.+sl.)=Yl.. The likelihood

f(xisyi)z

function for Equation (4.3) is

e e 22

=Wexp}g{g[u—z)’ (xz--XJ'][TI s”[y)yf]ﬂ

1

=(2)+Q/p _‘E{Z((x—z)' Q7 (5 -¥)+(x.-X,) Q;é(xf-Xf))H

i=l

=K|s1:|% exp[‘é{i&x,.-xo' Q3 (x, - X,)+(3, -4 pX,) fo(yf-“‘ﬁ"f)}}]

where K = (271)% and the log-likelihood function is
L'=InL
1 & ' '
=—an—gln|Q|—52|:(xl.—Xi) ;! (x,— X, )+ (5, —a— pX,) Q1 (, —a—ﬂXl.)]
i=l1
(4.4)

To guarantee a solution for the problem of maximizing Equation (4.4), an

additional assumption proposed by Kendall & Stuart (1979) will be used, namely,

iv) Q,=1Q, < Q; =%Q;§ & 17 =Ao” where the ratio of error

variances A is a known constant.

In this case, Equation (4.4) becomes
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L=-InK-21n27|Q,,[
2

_l ’1 [(xj _Xi)' ngl(xj_Xi)'i_%(yi _a_lBXi), ngl (yi_a_ﬁXi)]

= —an_gln/ip —nln|022|

~ 4.5)
1 u ! 1 ’
_EZ (xi _Xi) szl (xi _Xi)+z(yi _a_IBXi) Q; (yi _a_ﬁXi)]
i=1 L
Q, Q
e[ 30000
There are (np +p+ 2) parameters to be estimated, which are X, X,,...,X b f,and

2
o .

Theorem 4.1 (Vector Derivative): Consider the quadratic form
f(x)=x'dx
where x is nx1, A4 is a square matrix of order n and 4 does not depend on X, then

%:(A+A’)x

and if 4 is symmetric, Zl =2Ax.
X

From the vector derivative formula for quadratic matrix equation evaluating to a

scalar, we have

Y e

3 sra] (o) ol
:_%Z::szl (X~ v, +a]

. no: 8(ﬁXi_yi)_
and the tangent vector to curve (ﬁXl. - yi) :R>R"i1s T =X,.
By using the Chain rule for vector functions, we have

or  or  O(pX,-y)

Popx-r)
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=—%i(ﬁXi—y,-+a)'Qz}‘X
== Z —a- X)X

Therefore, differentiate Equation (4.5) with respect to £ and set the result equal to zero

(ai = Oj , yields
p

Z%(yl-—a—ﬁX,-)'I(X,-)=0 (v, =01

i=1 O

Zn:y;X" _a’iXi _ﬂZn:X,-'Xi =0
=l i=1 i=1

Zyl.’f(l. —&' X,
. ﬂ = i=1 =1 (46)
XX

s.

Similarly, differential Equation (4.5) with respect @, X, and o give the following

results
oL 1 .
6_X,.=_E{_2922 (x,-—X,.) sz( —a- ﬁX)( ﬁ)}:()
(xi—Xi)+%B(y,~—a—/in):0
~(44 B7) X, + (o, + fy, — pa) = 0
)A(i _ Mi"‘ﬁ({’i_&) (4.7)
A+ p

and,
oL 1¢--2 B
80:__5;7922( —a—pX;)=0

Zn:(yi_a_ﬁXi)z

"+ Q, is positive definite and diagonal and Q,, = "1

iyi _na_ﬂiXi =0
i=1 i=1
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where f=[)71 fz--'fp]’ and )_c=[fl EZ---xp]’.

Substitute Equations (4.7) and (4.8) into Equation (4.6) yields

Zy{ﬂx+ﬁ(y2—a)]_az£/1x+ﬁ(y2—a)]

_IbA)_i:l A+ i=1 A+ p
i Mi+ﬂA(yi_&) ' Mi+ﬁA(yi_&)
i=1 /14‘&2 /14‘&2

( ){Z( iy, + Byl - pay,) —/lo‘z’Zn: X, — /9&'2 y+ n/?&’&}

+
Z(/lz X, +2/1ﬁxy 2/1ﬁax 25 aly, +[>;2y;yi +[§2&'&)
i=1

(/1+ﬁ2){/12xy +ﬁZyy 2npay — /lnax+n,é&'&}

/lzzn:x;xl.+2/1ﬁ2x;yi—2/1ﬁ Zx —2p% 'Zyl+ﬁ Zyly +np*a'a
i=1 i=1

(4.8)

(1Y 3o Bt =2 (= 55— ) - 5 )

73 i+ 2003~ (5~ ) %~ 200 (5 ) 7 S i+ (- ) (5
i=1 i=1 i=1

(i+ﬁ2){,1(2n: Xy, —n)_c'f]+ﬁ£zn: A —nf'f]+inﬁf')_c+ nﬁ3§§}
i=1 i1

r Z x/x, + 248 (Z Xy - n)_c’f] + B (Z oy - nﬁ'ﬁ] +2nAB X% + npix'x
i=1 i=1 i=1
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(/1 +p? ){iny + ﬁSyy + Anfxx + nﬁ3)_c')_c}

B xix,+20pS,, + S, + 2nf° X% + np X%

i=1

where S, :in'xi—m—c’)_c, S, :zyi'yi —nyy and S, :in'yi—n)_c’f.

i=1 i=1 i=1

This implies that
2B xix,+ 23S, + S, + 2mf° X% + nf’ X%
j=1
2 N 2 p—i— N3—r— N2 n3 N3 —r— nNS—r<
=28, TABS,, + AnpXXx +IinfXx+ S, + S, +infXx+npxx

:>/12,BZxx — Pnpxx+2p’S, ~ 7S, ~IfS,,

i=1
BS, +B(2S =S, )= 2S,, =0 (4.9)

Solving the quadratic Equation (4.9) yields

(48, - Syy)i\/(/lex -8, ) +44s°

p= 25,
(5, —lSu)i\/(Syy ~78,) +418°
- 28,
g5 <18, )+ (S, =4S.) St (4.10)

28

xy
The positive sign is used in Equation (4.10) because it gives a maximum to the

likelihood function in Equation (4.5) as shown below. From the previous result, we have

- =—Z —a- XX, =T/ QX - a LK, - L X/ X))
and the second order derivative yields

oL 2
o =—z KoND'¢ ——ZX IX, ——ZXX (@, =0T)

2 r*

Since ZXi'Xi >0 (practically X #0) and 4> 0, this implies that —-<0. The [;’s

are local maximum points. Now, we let

. (SW—inx)i\/(Syy—/lex)2+4/1Si A
p= 28 28

Xy Xy
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Furthermore, Result 6 from Section 4.3 and Section 4.4.2 shown that A =2S_ , >0 must

be non-negative and therefore the positive square root must always be taken.

oL 2 5 ' I '
L2y 35X (=X S0 (- ) =0
S ) (X4 30 X (-0 )|
o 1Y o\ o) 13 N .
6 =%{;(xi—Xi) (xl.—Xl.)Jrle_l:(yl.—a—ﬁXi) (r-a-p )} (4.11)

Since 6° is a bias estimator of 6° (Kendall & Stuart, 1979), we multiply

Equation (4.11) by —2"

yields the consistent estimator
n f—

s (n_lz)p{zn:(xi_Xl.)'(xl._)%i)%i(yi ~a-jx,) (» —&—/}])} 4.12)

i=1 i=1

Substitute Equation (4.7) into Equation (4.12) yields

i[xf—“f”}@f&)] ["f—”"f”;(fs‘&)
. 1 i1 A+ p At+p
" T2 A5y a2 B | (s 2t
1 e yi—a i+ﬁ2 Yimd /1+,32
< lézxi_ﬁ(yi_&)’ ﬁzxi_lé(yi_&)
_ 1 i=1 /1+ﬁ2 /1+'32
=) e e ix, — A
WL . —/’Lﬂ)fl. —la || Ay, _ﬂ'ﬁ"fi —la
AT ﬁv“‘ﬁz /1+ﬂ2
o [BAlseas) blpnries)
p(n=2)(4+4) +%g(y,—&‘3xz)'(yz‘&‘3xf)
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{n ﬁz(yi_&_ﬁxi) (yi_&_léxi)

3 1
) p(n—2)(/1+ﬁ2)2
1

Result 3: Given the Multidimensional ULFR model with single slope defined by

1

Equations (4.1) and (4.2). The maximum likelihood estimators of @, £, X, and o; are

a=y-px

5 (s, —/lex)+\/(Syy 78, ) +4182
- 25,

X = Mi+ﬁ(yi _&)

1

A+ B

L ! o
and 6 _p(n—Z)(ﬂ+ﬁ’2){;(yi a ,Bx,-)

!

(3=}

n n
: : : _ ' —r— _ ' ——
where /A is the ratio of error variances, and S = E XX, —nxx, S = E Yy, —nyy

i=l1 i=1

and S, =) xly,—nxy.

i=1

4.1.3 Graphical Representation of the MULFR Model with Single Slope
The p-dimensional MULFR model with single slope defined in Equations (4.1)

and (4.2) can be re-written as

(xli Xoi 0t xpi) :(Xli Xy oo Xpi)’_'_(éli Oy 5])1’)’

80



! !

and (Yh Y, - YA) :(al a, - OCP)’-FIB(X” X, - Xpi),i:1,2,...,n.

i pi
Let a, ,é and X ; be the maximum likelihood estimators for @, f and X,, respectively.

The relation

~ ~ A\ ’ AL A N N !
(Yli Y, sz) :(al Q, ap) +ﬂ(X11 X, pl)
Y, =a,+pX,
.=6c +IB .

or 2i 2 2i
Ypi:ap+ﬁ o

are p linear equations with the same slope but different intercepts. The idea of MULFR
with single slope is depicted graphically in Figure 4.1. The colored smooth lines
represent the fitted ULFR model for corresponding local data sets (elliptic regions
shaded with different colors). These colored smooth lines have different slopes and
different intercepts. The red colored doted line represents the fitted MULFR model for
global data set, which containing all local data sets. Note that all the local (doted) lines

and global line have the same slope.

Xi

Figure 4.1: Graphical representation of MULFR model. The parallel bolded lines in red color are the
fitted model with the same slope with different intercept values.
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4.2  Properties of Parameters

Since the probability distributions of the error terms J, and ¢, in Equation 4.2 is

generally unknown, it may be necessary to ensure that ¢ and ﬂA to be applied with the

conditions that it poses certain good properties such as unbiasness, consistency and

asymptotically normal.

4.2.1 Unbiasedness of Parameters

This section discusses the properties of @ and ,3, i.e. the expected values and

variance of the estimated parameters. Note that Equation (4.12) can be written as
S,y — S .
28

Xy

B=0+6"+2 where 6(x,,p,)=

Thus, the expected value of ﬂA is
E(ﬁ):E(9+\/02+/1):E(0)+E(\/02 +/1) (4.13)

Since Equation (4.13) cannot be solved explicitly, we solve it by using the first order

Taylor approximations (or Delta method) (Bain & Engelhardt, 1992) for the mean of
Q(xl., yl.) . The first expected value in Equation (4.13) can be obtained by the following

0(x,.y)=0(X,+6,Y +¢,) (from Equation (4.2))
=o(x.¥)ro U g L
8xi X=X 8yl yi=Y;
=0(X,.Y,)+d 0 ox +g 0, oy (4.14)

where the partial derivatives are evaluated at the mean (X l.,Y:.) . Equation (4.14) is valid

. . 2 2 .
only if the error variances, o; and o are small. Since

E(a’

i

_ X =X E(élk) - 0

(wE(6)=0=E(9,)=0)

Similarly, we have E (si' Gyb‘ . ) = 0. Therefore, Equation (4.14) becomes
Y=l
E[0(x,y,)]= E[@(Xl.,Yl.)]JrE(éi' 0.| _ )+E(£i' 0,] Y)
X=X Hyi=hi
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Syy —AS

=0(X,
28y

1

¥)-

1

(4.15)
where Sy, =Y ¥Y,-n¥Y'Y, S, => X/X,-nXX and Sy, =Y XY, -nX'Y .

. ) op -y, 00
ow le (D(X,a.)’,) (x,,y,)+ 1s 1mplies tha . ( + ) axA

1 1

We have

(p(xi’yi):(p(Xi +9,.Y, +8i)

T R AT d R
axi x;=X; 6yl yi=Y;
=9(Xi,z)+(92+z)%95; | (e ey \

Hence, the second expected value in Equation (4.13) is
Elo(x. )] Eo(X.3)]+0(6" +2) “E(5'0,|_ )ro(e*+2) “E[s0,] )

~(X, %) +0(6%+2) " (0)+0(6+ 1) (0)

=0’ (X,.Y)+ 2

2
_ [ S =ASw | (4.16)
25,

From the Equations (4.15) and (4.16), hence Equation (4.13) becomes

2
E(ﬂﬂ)iSyy—/lSXXJr Syy —AS )
28y 28y

Syy = A8y ) ¥4 (Syy = ASyy )’ +44S>

( YY xx) \/( YY xx) Xy

= 33 (4.17)
Xy

The next step is to show that S,, = S, and S,, = f°S,, = BS,, as also stated in
Lindley (1947).
Sey =D XY, -nX'¥Y
=D X/(a+pX,)—nX'(a+ pX)
=Y (Xa+pX/X,)-nX'a-npXX
=a') X + Y XX, -na’X -npX’X
=/ (XX, -nX)+ (T XX, - nXX)
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= PSxx

and Spy =YY, —nYY
=3 (a+pX,) (a+ BX,)~n(a+ pX) (a+ pX)
= Z(a'a+2ﬁa'Xl. +ﬁ2Xl.'Xl.)—n(a'a+2ﬂa')_(+ﬁ2)_(9?)
=na'a+2pa’y X, + B> XX, —n(ada+2paX +fXX)
=5 X'X, -np’X'X
s (Z X'X, —n)_(’)_()

= :Bszx = IBSXY

Therefore, Equation (4.17) can be reduced to

(5*S —x%SXX)+\/(ﬁ2SXX ~ASyy ) +4A87S%
288,
(p-2)s +\//3 S 288> +A’S1 +4AB°S
285,
(£ -2)Sx +\//34S; 1245’2 + 2’8
288,

£(3):

(B ~2)Sy +\/(/)’ZSXX+/15XX)2
268,
(B> =2) Sy +(BSxx + ASyy )
265
(8°-2)+(p+2)
2p

_25
TR

From the Equation (4.7), we have
6=y~ fx

:E(&):E(i—ﬁ’f):i—)_cE(/})éi—ﬂ)_c=a

B
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Result 4: Given the MULFR model stated in Equations (4.1) and (4.2), then the

maximum likelihood estimators of & and f are approximate unbiased estimators, i.e.

E(ﬁ)iﬁ and E(a)=a

4.2.2 Variance and Covariance of the Expected Parameters

To find the variance of the @ and ﬂA , we consider the Fisher Information Matrix

(Klein & Neudecker, 2000) of parameters a and ,3 The first order partial derivatives

for log-likelihood function are given by

oL 1 .

5212925(%—“—[3&)

oL 1 r
and %:Z (y,- _a_ﬁX,‘) QzéXi

The second order partial derivatives for log-likelihood function and their negative

expected values are given by

o’L n_ . 82L*j n

=——Q ), hence E| - -
oada A oada

2 r* %
Tl Ayixad). e £[-ZE <13 (xa)

2 r* 2 r*
6L2 __L (Xl.'ngle.), hence E _8L2 :lZ(Xi'QzéXi)
B y) ap y)
o’L 1 o’L ) 1

and =—>(Q'X ), hence E| — =—>» (Q)X.
dpoa /12( 2 X)) aﬂaaj /12( 2 X))
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D is a 1x1 matrix given by %Z(X’inf(,) .
Thus, the inverse of F' (Zhang, 1999) is
1\ -1 S1p)7!
(4-BD7'C) ~A"'B(D-CA4™'B)
F'=
-1 -1
-D"'C(4-BD'C) (p-ca'B)

Therefore, we obtained the following results:

var(p)=(D-ca'B)'
:BZ( o Xi)_%{z(xirgzg)}(%fz2;j"%z(fzz;fc)}

_ /1{2()2,-’@5& ) _l{Z(f(i'fzzé )} (sz ){Z(QZXI )}T

n

= 16" [z XX, —%(Z X/ )(Zf(i )}1 (@, =0"I) (4.18)

Var(a)=(4-BD"C)’

— -1

oo xlsens | 1xjva)

N

[2a:- ﬁ{zmnx >}{2<Xﬁm)}”{Z(fc'ﬁzs)}}
[iz - ZX X, } { 12 ZX,.HI (@, =0"I)
= 26 [nl—{ZXi}{ZXi'f(i}l > Xﬂl (4.19)

and Cov(a, #)=-D"'C(4-BD™'C)"

-1

— -1
Iefommioll Ieofomantl 7 ar Tieraron [ omroll 1ol oA
~{ix(vann )| (e tar e (L D(va | L (xay)

e e T e R |

o

) I N ] EEEAD 2 {zx}} @.20)

86



Mi+B(yi_&)'

where Q, =6°I and X, = ~
i it

Result 5: Given that @ and ,B are MLE of a and f, respectively for the MULFR

model, then
vir(§)=15°| $.%/% - 1(2 A;)(ZX,.)}
vir(@) = 26wt - [ LR T %% ) {zx}}

4.2.3 Consistent Estimators

Definition 4.1: An estimator én of @ based on a random sample of size n is a consistent

estimator of 6 if limP(‘én —0‘ > a)) =0 forevery w>0.

n—>0

Theorem 4.2 (Chebyshev’s Inequality): Let X be a continuous random variable with

finite mean u=FE (X ) and variance o’ =V(X ) , and let ¢ >0 be any positive real

number. Then

P(|X—,u|2€)£ V(X)

2
&

Theorem 4.3: An unbiased estimator én for 6 is a consistent estimator of 6 if

lim¥ar(6, ) =0.

n—>0
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It has been shown in Result 4 that estimators a and /;’ are approximately

unbiased. From Chebyshev’s inequality, we see that

d

Without loss of generality, we remove the equality inside the probability in Equation

ﬁ—ﬁ‘Zw)S Var(f)) 4.21)

(0]

(4.21) and combined with Definition 1, yields

limP(‘ﬁ—ﬁ‘ >w)si2limVar(/§)=0

n—0 a) n—»o0

:hmVar([f)zO for every w>0.

n—x

In order to show that the estimator /;’ is consistent, we need to indicate Var( ﬁ ) —0 as

n — oo. This can be obtained from the results in Result 5 as follows

lim Var( B) = Alim 1 6
”_’“’ ”—’“’ ZXi’Xi_n(in’)(zXz)
I (R e (P
=Alim o~ 1 -, X
S X)X, —n(ZX,. )(ZX,)
=9

Similarly, we can show V&r(&) —>0 as n—> 0.

4.2.4 Asymptotic Normality and Efficiency

Theorem 4.4 (Multivariate Central Limit Theorem for iid sequences): If X, X,,... are

independent and identically distributed with mean g € R* and covariance X, where X

has finite entries, then
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Jn(X, - u)—>N,(0,5)

Theorem 4.5 (Weak Law of Large Number): Let X,,X,,...,X, be an independent
trials process with a continuous density function f, finite expected value u, and finite

variance ¢°. Let S, = X, + X, +---+ X, be the sum of the X,. Then for any real number

28]20

£>0 we have

S}’l
-

n—x0 n

<8J=1.

Theorem 4.6 (Taylor’s Theorem for Multivariate Functions — Linear Form): Suppose

limP[

n

S
—
n

or equivalently, lim P(

X cR"isopen, xe X ,and f: X — R" is differentiable. Then

f(x+h)=f(x)+Df (x)(h)+o(|]) as h—0

where Df (x) :Zl and o(+) is an error term.
x

To prove the asymptotic normality and efficiency of ,3, we shall assume that the first

two derivatives of the log-likelihood function L' (see Equation 4.4) exist, that

* 2k %\ 2
E oL =0 and [/ (,B)=—E 8L2 =FE oL is the Fisher Information, where
B B &b

I1(B)>0.

Using Taylor’s Theorem, we have
* * 2 ¥
(ai] {aij +(/>’—/)’o)[al;] (422)
), \op 5 B )y
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where £ is some value between /;’ and f,. Since /;’ is the maximum likelihood

*

estimator of L', this implies that the left-hand side of (4.22) is zero, [%j =0.Onits
B

* 2 ¥
right-hand side, both o and oL
op 2

are sums of independent identical variates, and as

n — oo each therefore converges to its expectation by the Weak Law of Large Number.

*

The first of these expectations is zero by E [2—;] =0 and the second non-zero by [ ( S ) .

Since the right-hand side of (4.22) as a whole must converge to zero, to remain equal to
the left, we see that we must have ( ﬁ — ﬁo) converging to zero as n — oo, so that ﬂA isa

consistent estimator under our assumptions.
We now re-write (4.22) in the form
( f ]
o op o
— — _—ﬂo —_ =
(8-5.) (M] or \n (B )\1(4,)
2
B ),

#(s), o
], e

In the denominator on the right of (4.23) we have, since /;’ is consistent for f, and B

(4.23)

lies between them, from

n[ 0p° J,; " onLOB .,

2 r* 2 r*
ﬁmp{{ag} 5[ 2L] }1
" % p=p % B=ho

{5

. oL D rs
igrgP{{ 7 L =1(/30)}=1 B e[ B8] (4.24)
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So that the denominator converges to unity. The numerator on the right of (4.23) is the

ratio to /7 ( /30) of the sum of the » independent identical variates. This sum has zero

mean by E (6L j =0 and variance
P s,

g BN R

The Central Limit Theorem therefore applies, and the numerator is asymptotically a

standard normal variate;

f(aaﬂ Jn {Z[&j 0] Jn llz(aij El[%] H
Vi) itg) [ mas ), ] i) [T ), L),

— N(0,1).

The same is therefore true of the right-hand side as a whole. Thus the left-hand side of

(4.23) is asymptotically standard normal or in other words,

nl () (B=$)) = N (0.1) or JZ(&—&)%N(OU(;O)]-

Similar argument applies to prove the asymptotic normality of @, , and generalized to

a= [&1 a, -+ a, I. The @, is asymptotically normally distributed

(e, - %HN(O ﬁ)

4.2.5 Interval Estimation for ¢ and p

For a p-dimensional ULFR model defined in Equations (4.1) and (4.2), we have

2np-independent observations that are available to estimate (np + p+2) -parameters of
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the population, i.e. p parameters from a and one from £ . Hence, the number of degrees

of freedom is np—(p+2).

Now, we can define the (1— a)lOO% confidence intervals for @ and S as

o, —Z,se(a,)<a, <a, +Z,se(q,) (4.25)
2 2
and ﬁ—Zase(B)SﬂSﬁ+Zase(ﬁ) (4.26)
2 2

where a is the level of significance, the standard errors se(q, )=+/Var(a,) and

se( ﬁ) = Vdr( ﬁ) can be obtained from Result 5.

4.3 Coefficient of Determination for MULFR Model

Re-write the Equations (4.1) and (4.2) as

yl.=a+,BXl.+sl.=a+ﬁxi+(£i—,b’5i)=a+ﬁxl.+l/i (4.27)
where the errors of the model is

V.=¢-p6=y -a—px,i=12,...,n (4.28)
If @ and ,3 are estimators of @ and S, respectively, then from the idea of least square
estimation and Equation (4.28) we have

I}l. =y, - :yl.—&—/}xl., i=12,....n
is the residual of the model.
SS,

p (n - 2)

and define the residual sum of squares as

1 .
=SS, , where ¢ =———— is a constant

p(n—2)

Note from Result 3 that 6° =

SS; = IA Z(yi_d_:éxi)’(yi_d_:éxi): IA Zl}zll}z

A+ B Py s
-~ 1/}2 (Zy,f.v,- &Yy, 2By 128 x, +”07'0?+[322x;xi)
+
1 v 2 ’_ N ’ N A !_
:ﬂ+’g2 (Zy;yl_zn(y_ﬂf) y_zﬁzxj y1+2l’lﬁ(y_ﬂ§) X

ol (- )+ S i |
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_— ([Zyiy,-—niﬂ‘zﬁ[zx/yf_”’_‘ﬂjLﬁz[zx"’x"_ngﬂ)

/1+/§2

Sy =2pSy + B8
A+ p?

The variability as explained by 6° is proportional to the variability of SS,. We only

consider the case A =1 that is when Q,, =Q,,. For those cases when 4 #1, we can

always reduce it to the case of 4 =1 by dividing the observed values of y, by \//1_,( as
the ULFR (Kendall & Stuart, 1979). Hence,

S —2BS +p*S
SS, =2 f[ygz P S (4.29)
+

Using regression idea, then the coefficient of determination can be defined as

S —-SS
R = e 155 _ 2n 20 (4.30)
S.V.V S.V.V S.V.V
For the case 4 =1, Equation (4.30) becomes
ps,
R; =—2 (4.31)
»y
s )
Proof: we need to show S5 _ Py < 88, =BS,,.
» yy
By definition, SS, =S, —SS,
o n2
_g S, =288, +B°S,,
yy 1+Bz
(S, 4878, )-(S, 285, +BS..)
1+ p2
S, +2pS,, - BS,,
1+
32 (S, ~ S, )+2pS
= b ( = xx) PSs (4.32)

1+ 2
From Equation (4.10) and A =1, we have

~

SyB=(S,, ~S.)B+5S, (4.33)

93



Substitute Equation (4.33) into Equation (4.32) yields

/?{[(Syy—sxx)/%sxy}Sxy}

SS, = ~
g 1+ 5
BB, s, S, (B 1)
1+ p 1+ B xy
Result 6: Let the ratio of the error variances be known and equals one (/1 :1),

then the coefficient of determination of the MULFR model is

R2 = SSR = _ﬁSxy
14
S S

yy yy

4.4 Properties of Coefficient of Determination when A =1

4.4.1 Range: 0< Ri <1 (Boundedness and Nonnegative)

From the regression sum of squares, we have

0<SS,=5, 5SS, <5,

4.4.2 Range of R} (an improvement of Section 4.4.1)

Let S, =kS,,. Since S, 20 and S, >0, we consider k£>0. From Equation

(4.31), we have

2 ﬁSxy (Syy_SxX)+\/(Syy_Sxx)2+4Siy
R="5 = 28

yy yy

(kS =S, )+ (kS =S, ) +4S,
24S._

(k=1)S, +4/(k-1)’ 8%, +45,
2%S .,
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2
X)

(k—1)"S2, +4S

y

_(k-1) J
ok

4k°S2,
2 o2
(k=) | [(k=1)' sz,
2k 4K*S2,

2k

(k—4)+(k—1):1_1
2k k

482 >0
(455, 20)

. 1 . .
Since 0 < Ri <1, then 0<1 % < R; <1. We consider the following two cases:

Case I: when 0<k <1

As k— 0", then R;zl—%a—oo.

OSR;SL

However we have R> >0, this implies that

As k — 17, then Rizl—%%O.Hence,wehave 0<R<I.

As k=1, then R;zl—%:O.Hence,wehave 0<R><I.

Case II: when £ >1

As k — o, then R;Zl—%—H.Hence,wehave O<1—%SR; <I.

Result 8: Let S,, =kS,, for k>0 and R’ be the coefficient of determination for

MULFR model when A =1. Then

Y
() <z

c, ¢>0

where ¢ =
{0, c<0

0<k<l.

and c=1—l .
k

4.4.3 Non-Symmetry Property

The full range OSR; <1 is achieved when

Given the MULFR model defined by Equations (4.1) and (4.2) with A=1, we

have
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(s, —Sxx)+\/(Syy -S,.) +452

ﬁ p—
25,
A 2
,  PS, (Syy—SXX)+\/(Syy_SxX) +4S§y
and R =—%=
TS, 25,
\/ S, —S..) +482 =25 R ~(5, -5, (4.34)

Now we consider a MULFR model by replacing Equation (4.1) with
X, =a +pY, i=1,2,...,n (4.35)

It can be shown that the estimated slope ( ﬁ*) and coefficient of determination, say f?i

for the new model when A =1 are

/= 25,
and R Z_ﬁ*S"y =B :(SM_SW)JF\/(S’“_SW) +45,
S, 28,
~(8,, - S.) \/(Syy—S ) +4s;
B 28
.
:_F_(Syy—sxx)—\/(sw—sm)z+4sjy}
= —% (S —Su)-28,R2+(S,, ~S,)|  from Equation (4.34)
1 —
=_E-2(S”_S )25,k |
_iRz_(Syy_Sxx)
S. " S,
Let S, =kS,, and k>0, then R’ =kR’ —k+1=k(R} -1)+1 (4.36)

Result 7: Given S, =kS,, where £>0. Let R’ and ﬁ; be the coefficient of

determination for MULFR model with 1 =1 as defined by Equation (4.1) and Equation

(4.36), respectively. Then
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R =k(R:-1)+1.

14
Hence, R; is symmetric when k =1 and non-symmetric otherwise.
The failure of satisfying symmetric property does not create much problem to
the application of R; since §,, and S, can always be determined and conversion
2 ~2 . . .
between R, and R, can be easily done. For consistency purpose, we consider the

image with larger variance as X and the image with smaller variance as ¥. With this

arrangement, the full range 0 < R> <1 will also be granted.

4.4.4 Identity of Indiscernible (Self-Distance)

(Syy _Syy)+\/(Syy _Syy )2 +4Sy2y N 4S§y -1

Let x =y, then R’ = = =1.
g P 28 28,

Jyy

~

pS, _

Jy

Let Ri =1, then 1

:ﬁ:%:(Syy—Sxx)+J£§yy—Sm)2+4s;y

Xy Xy

25, =(s, —Sxx)+\/(Syy -8} +4s2

2

S, +8, = \/(Syy —Sxx) +4582,

S2 +82 +2S.S, =52 +82 -2S_S, +452
4SxxSyy = 4Siy =>Xx=y

2
Therefore, R, =1< x=y.

4.4.5 Translation Invariant

Given S = Z x]y,—nx'y and a and b be constant vectors.
i=1
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n , 1
S(x+a)(y+b) = i:1 (xi +a) (yi +b)_; :

=

- (x;yl.+a'yi+b'xi+a'b)—l( n xi'+na'j(zn:yi+nb)
- .

i=1 n\ -

Xy +a Zy +b' Zx +na'b—

i=1 i=1 i=1

+ na'zn: v+ nb'zn: x, + nza'b}

i=1 i=1

Il

=
:I»—
1
7\
I =
=
N
7\
I =
=
N

-3 yl+a y +b x,+na'b——) x> y —a n y,—b n x,—na'b
j=1 ’11 =1 =l =1 i=1

=Z X, ——Zny

3

= xilyi_nxry=5xy

i=1
Follow the same argument, we obtain S, ) =Sy and § =S, . Similarly,

x+a (

we can show that

2
F B (Satsen) = Siceageon ) * \/ (Straros) = Sievaenn ) + 45 cra) o)
(era)(re9) =
28 csa)(y0)

BirayynySieraissn)  PoSw

— Xy
(x+a)(y+b) -
(y+a)(y+b) S

Therefore, R’ =R

2
xp

4.4.6 Scale Invariant

n
Given §, = Z x/y,—nx'y and a and c be constant vectors.
i=1

G i ac < L
_aczxi yi__zxi Zyi
i=1 n

i=1 i=1
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n , 1 n , n
=ac le. Y ——le. Zyl. =acs§,, .
i=1 nz =

Similarly, it can be shown that S, =a’S, and S,

P (S =S )+ \/(Scy’cy ~Spw) +4S3,
we 28

ax,cy

(czSyy —aszx)+\/(czSyy -a’S,, )2 +4a202Sjy

y.y

c’S ,»- This implies that

2acs§,,
c a c a ?
2
(aSyy—chxj‘F\/(aSyy—chxj +4Sxy
2Sxy
Therefore,
c a c a 2
n -5 ——8 -5 ——8 45?2
2 ﬁachaxc aCS (d » c xxj+\/(a » c xx) ’ Y
R (arey) <P
Scy,cy cSyy ZSxy

Xy

Jyy Xy

When a =c, then

o5 =R, (x,y)=R;.

2 ~
2 _Sx (Syy—SxX)+\/(Syy_Sxx) +4Sjy _ﬁ
Rp(ax,cy) _S_yi 28, B Sy

When a>c or a<c, R (ax,cy)#R,.

4.4.7 Confident Interval

Note that E(R;):E[%J=&E(ﬁ):&
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and Var(Ri)=Var(ﬁSny=§—’zder(ﬂA).

Jyy yy

Refer to Equation (4.23) and let L, =B—Zase(ﬁ) and U, =ﬁ+Zase(ﬁ). There are

2 2
four possible cases:

Case I: when Uﬂ ZLﬁ >0

Then the (1-a)100% confidence interval for the population R’ is

.S 2 . S .8 S? .
po2_z —;V&r(ﬂ)sﬂisﬂi+za —*;Var(ﬂ)
Syy 2 W Syy Syy 2 w

k2 (4.37)

Case II: When U, >0> L, and ‘Uﬂ‘ > ‘Lﬁ , then Equation (4.37) holds.

U,S Sy LS,
Case III: When U, >0> L, and [U| <|L,|, then == < p—2 < (4.38)
S.V.V S.V.V S.V.V
Case IV: When 02U, > L, , then Equation (4.38) holds.
Result 9: Let the ratio of the error covariances be known and equals one (/1 = 1) ,
then the (1 - a)lOO% confidence interval for the population Ri is
L,S S, U,S
o gl « ZFw if |U,] 2[L,|
S.V.V S.V.V S.V.V
U,S S LS
Lo gpw gl it |U,] <[z,
»w S.V.V S.V.V

4.4.8 R is a Special Case of R, When p=1.
From Equation (3.22), the coefficient of determination for ULFR model when

A=11s
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b

(s, -48.)+ {(SW 48, ) + 4/1Sxy}
28

Yy

R; =

where S, =Yy -ny*, S, =Y x}—nx’ and S, =D xy, —nxy.

From Result 3 of MULFR model, we have

n
_ Ive _ v
Se = E X/X; —nx'x
i=1

=

=Z|:xli Xy xpi:II:xli Xy 7T xpi:lr_n[fl X, oo fp][fl X, e p:I’
=Z(xi+x22,-+"'+xii)_”(’?|2+f22+”'+’?j)
=(in—nflz)Jr(in—n)_cj)+~-+(2x[2”_—nfj)

=S +82 +--+8”

When p=1,then S_ =S5 =S_. Similarly, we have S, = S;y =S, and S, = AN

y xy

(s, —Sxx)+\/(Syy -8, ) +4s?
28

Jy

Therefore, R; =

R = (SW -Sxx)‘i‘\/(SW -Sxx)z +4Sx2,v _R

p=l 28

Yy

Result 10:  Given that A=1. Let R; and R} be the coefficient of determination for

ULFR model and p-dimensional MULFR model, respectively. When p =1, then

4.5 Conclusion

A new correlation-based statistical similarity measure was proposed in this

chapter. It is a generalization from the ULFR model and the similarity measure, Ri , 18
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non-symmetric under certain condition stated in Result 8. The proposed measure Ri

has many potential applications in image processing such as image quality assessment,
performance evaluation for image processing algorithms and pattern recognition. It
measures the proportion of variation in reference image explained by the distorted
image. The advantages of the proposed measure as compare to other existing similarity
measures are: (i) it accommodates to both perfect and non-perfect reference image, (ii)
it has flexibility in combining one or more image quality features, and (iii) it
compromised between global similarity measure and localized similarity measure. In

the next chapters, some simulation works will be carried out to verify the properties of

the MULFR model with single slope. Then, we apply the proposed Ri as a performance

indicator for feature vectors matching in character recognition and image quality

assessment of JPEG compression.
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